时装技术与纺织工程

Characterization of Wool Fabric Surface in Terms of Transient Heat Transfer

Chendi Tu and Sachiko Sukigara

A precise, simple method for characterizing wool fabric surfaces and moisture absorption has practical value in fabric design. Transient heat transfer has attracted attention because it is strongly related to the fabric surface and moisture absorption. To evaluate transient heat transfer for characterizing wool fabric surfaces, the Kawabata Evaluation System for Fabrics (KES-F) was used to measure the maximum heat flux, qmax, and surface properties of wool fabrics. The effect of moisture regain on qmax measured at two ambient humidities (65% and 90% relative humidity) was also discussed. A rough surface and a large amount of fuzz decreased qmax. A high correlation (r2=0.858) between qmax at 65% and 90% relative humidity was found. Therefore, qmax is suitable for characterizing the difference in the surface roughness, surface fuzz, and moisture content of wool fabric.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证