运动增强杂志

Peak Ankle Muscle Activity of Faster and Slower Basketball Players during the Change-of-Direction Step in a Reactive Cutting Task

Robert G Lockie, Adrian B Schultz, Tye S McGann, Farzad Jalilvand, Samuel J Callaghan and Matthew D Jeffriess

Peak Ankle Muscle Activity of Faster and Slower Basketball Players during the Change-of-Direction Step in a Reactive Cutting Task

Study Background: Basketball requires frequent direction changes during match-play under reactive conditions. The ankle dynamic stabilizer muscles (Tibialis Anterior [TA], Peroneus Longus [PL], Peroneus Brevis [PB], soleus) may influence cutting effectiveness. This study examined whether ankle muscle activity differentiated between faster and slower basketballers in a reactive cutting task. Methods: Eighteen male basketballers completed six reactive trials (randomized three left and three right) of the Y-shaped agility test. Electromyography measured peak normalized (against 10-meter sprint muscle activity) activity (nEMG) of the TA, PL, PB, and soleus for both the inside and outside legs during the change-ofdirection step (first step past the trigger gate that initiated the cut). The outside leg was the leg furthest from the target gate; the inside leg was the closest. The faster direction change (left or right) was defined as the preferred or non-preferred cut direction. Preferred cut direction time was used to divide the sample into faster (n=9) and slower (n=9) groups. A one-way analysis of variance (p<0.003 for multiple comparisons) and effect sizes calculated any betweengroup differences in cutting and muscle activity. Data was pooled for a correlation analysis (p<0.05) between test times and ankle muscle nEMG. Results: The faster group was quicker in the preferred and nonpreferred cuts, although there were no significant between-group differences in muscle activity, and no significant correlations. There was a large effect for the 83% greater inside leg PL nEMG for the faster group in the preferred cut compared to the slower group, although this was non-significant. Conclusion: The greater activity of the inside leg PL for the faster group, shown by the large effect, could have aided foot movement during the change-of-direction step. Nevertheless, ankle muscle activity generally did not distinguish between faster and slower reactive cuts in basketballers.